

ASX / MEDIA ANNOUNCEMENT

27 NOVEMBER 2025

MOUNT IDA GOLD-IN-SOIL ANOMALIES IDENTIFIED

HIGHLIGHTS

- The soils sampling data collected in 2023 from both the Phase 1 and 2 lithium sampling and recent 2025 program has identified six gold anomalous areas that warrant follow-up soil sampling.
- The southern anomaly was investigated on the ground in late September by BMGS with seven rock chip samples from outcrop and with twenty-seven soil samples taken.
- The three highest values assayed in the rock chip samples were,
 - 1.70q/t Au JSG002
 - o 1.96g/t Au JSG004
 - 2.05g/t Au JSG007
- This first pass review, sampling of outcrop and further soils samples at Mount Ida has confirmed gold potential within a gold producing area.
- Further soil sampling with infill on the current six anomalies identified and inconjunction with wider spaced sampling on unsampled areas will commence in December.

Juno Minerals Limited (ASX: JNO) ('Juno' or 'the Company') is pleased to announce that further soil sampling and geological mapping will be undertaken on the several gold-in-soil anomalies that have been identified at Mount Ida from evaluating past soil sampling (See ASX announcements 30 June 2023 Quarterly - 27 July 2023 and Mount Ida Lithium Prospect - 12 September 2023), and from the favourable outcome of the preliminary on the ground investigation undertaken by BMGS out of Kalgoorlie in late September 2025. A total of seven rock chip samples from outcrop (QV1) and twenty-seven soil samples taken within the anomalous area in the south-east of M29/414, confirmed the gold anomaly identified, (See ASX announcement Mount Ida Gold-In-Soil Anomaly 29 October 2025).

From the BMGS field trip investigating the southern gold-in-soil anomaly (see Figure 1) this was associated with a mapped quartz vein structure labelled as QV1 and was where the rock chip samples were taken (See Figures 2 and 3). Two other quartz veins were mapped, QV2 and QV3 however were not sampled in this first field trip.

.

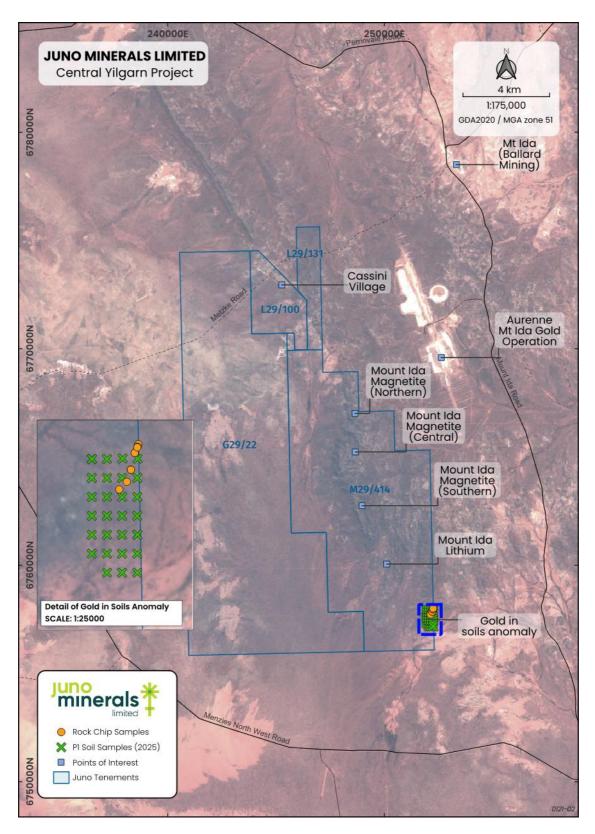


Figure 1: Southern gold-in-soils anomaly.

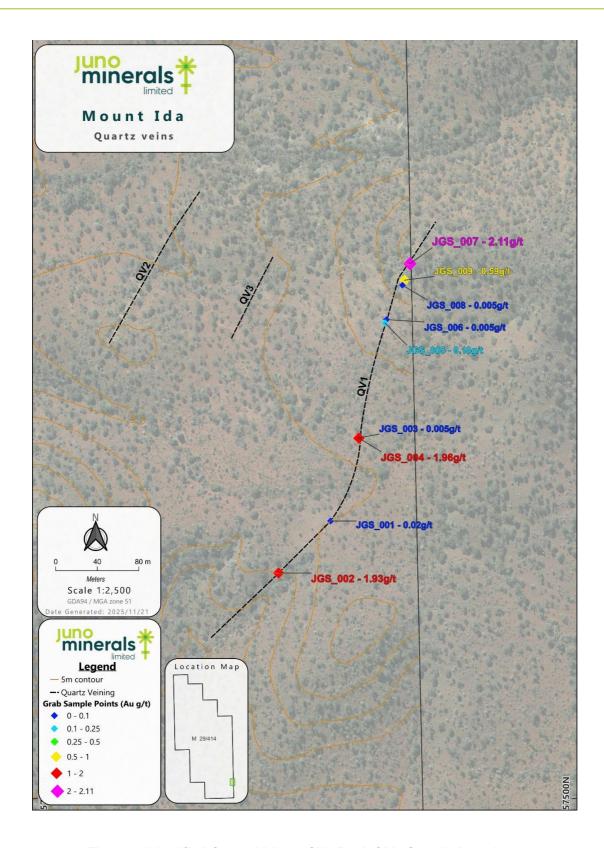


Figure 2: Identified Quartz Veins – QV1 Rock Chip Sample Locations.

Figure 3: QV1 Outcrop.

Sample	MGA51_e	MGA51_n	Au g/t	Au g/t (repeat)	Au g/t (mean)
JSG_001	252188	6757767	0.02	-	0.02
JSG_002	252138	6757717	1.67	1.93	1.70
JSG_003	252215	6757847	<0.01	-	<0.01
JSG_004	252215	6757847	1.96	-	1.96
JSG_005	252240	6757958	0.18	-	0.18
JSG_006	252242	6757962	<0.01	-	<0.01
JSG_007	252264	6758015	1.99	2.11	2.05
JSG_008	252257	6757995	<0.01	-	<0.01
JSG_009	252259	6757999	0.59	-	0.59

Table 1: Rock chip sample assay results from QV1

Sample	MGA51_e	MGA51_n	Au	As	Bi	Cu	Cr	Sb	Te
			ppb	ppm	ppm	ppm	ppm	ppm	ppm
JMIS0915	251957	6757918	6.9	5.7	1.76	206	609	0.24	0.11
JMIS0915D	251958	6757918	10.4	5.5	2.01	204	541	0.29	0.13
JMIS0916	251957	6757793	10.2	6.0	0.81	166	487	0.25	0.10
JMIS0917	251957	6757668	13.4	6.4	1.17	267	356	0.26	0.24
JMIS0918	251957	6757543	22.8	4.4	1.16	255	316	0.19	0.22
JMIS0919	251957	6757418	17.9	5.6	0.76	224	289	0.24	0.18
JMIS0920	251957	6757293	5.5	5.4	0.72	126	700	0.26	0.14
JMIS0921	252057	6757918	12.6	5.4	1.50	300	239	0.23	0.22
JMIS0922	252057	6757793	18.6	5.4	1.13	304	226	0.22	0.18
JMIS0923	252057	6757668	13.8	5.3	1.15	631	135	0.21	0.25
JMIS0924	252057	6757543	16.1	6.4	0.89	602	148	0.21	0.15
JMIS0925	252057	6757418	18.0	5.0	1.20	378	175	0.23	0.20
JMIS0926	252057	6757293	16.6	5.4	1.13	381	162	0.24	0.25
JMIS0927	252057	6757168	5.6	5.0	0.90	434	156	0.20	0.18
JMIS0928	252157	6757793	55.3	5.0	2.87	426	154	0.20	0.20
JMIS0929	252157	6757668	54.5	4.6	1.16	627	117	0.16	0.13
JMIS0930	252157	6757543	20.7	4.6	1.09	718	136	0.22	0.17
JMIS0931	252157	6757418	18.1	5.8	0.64	370	160	0.25	0.12
JMIS0932	252157	6757293	14.6	5.9	0.70	589	142	0.25	0.14
JMIS0933	252157	6757168	10.6	5.8	0.71	476	148	0.22	0.13
JMIS0934	252257	6757793	15.2	4.8	1.00	407	162	0.20	0.12
JMIS0935	252257	6757668	43.6	4.4	0.81	794	133	0.17	0.14
JMIS0936	252257	6757543	36.0	5.1	0.74	515	134	0.21	0.12
JMIS0937	252257	6757418	19.9	4.6	0.80	485	179	0.21	0.20
JMIS0937D	252258	6757418	20.0	4.3	0.81	504	168	0.18	0.19
JMIS0938	252257	6757293	9.0	5.2	0.56	440	149	0.23	0.12
JMIS0939	252257	6757168	7.0	5.8	0.86	238	152	0.28	0.13
JMIS0940	252157	6757793	32.1	5.5	2.12	413	156	0.23	0.22
JMIS0941	252157	6757793	51.5	4.4	1.80	487	164	0.18	0.15

Table 2: P1 (2025) Soils Sample Results

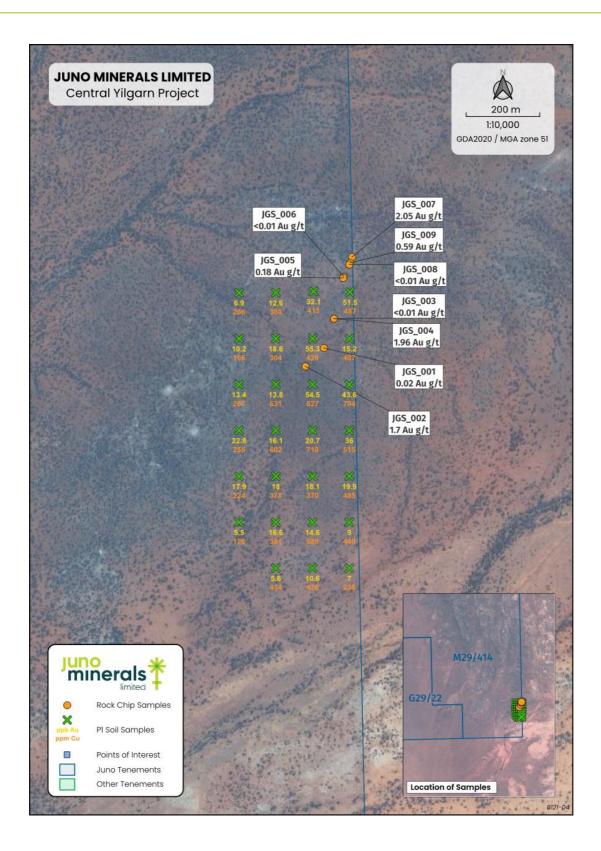


Figure 4: Rock chip samples (QV1) and gold-in-soils anomaly extension

From the 2023 and 2025 gold-in-soil results (Au, Bi, W and Cu) these pathfinder elements that were observed, BMGS plotted the areas of overlap in QGIS which allows analysis of spatial information. This interpretation identified six distinct anomalous areas that warrant further follow-up soil sampling (See Table 3 and Figure 5).

Anomaly Area	Comment			
1	Strongest Au anomaly with highest Cu value			
2	Au, Cu, & Bi anomaly over a single line open in three directions			
3	Au & Bi anomaly over a single line open in three directions			
4	Au only anomaly that is open in three directions			
5	Well defined Au, Cu & W anomaly that extends 290m along strike, open to the NE			
6	Anomaly open to the SW			

Table 3: Combined soil interpretation

Historical auger sampling completed by Newcrest Mining were compiled from archived annual technical reports (A53546) available from the Department of Mines' open file records on historical tenement E29/167.

With the data combined a strong correlation is evident with the 2023 and 2025 soil sample anomalies 1, 2, 3, 5, and 6. Notably, anomaly 3 indicates potential for significant extension to the southwest (See Figure 6). It should be noted though, that the sampling and assay methodologies used by Newcrest remain unclear.

With the positive outcome of the initial rock chip sampling program over Anomaly 1 and soil sampling Juno will commit to the next phase of work to further evaluate the potential for an economic gold deposit:

- 1. The rock chip samples submitted for multi element assay.
- 2. WAMEX search for further historical work undertaken.
- 3. Tight infill soil sampling around the current anomalies to close off their extents.
- 4. Wider spaced sampling in in currently unsampled areas.
- 5. Detailed outcrop cross sectional sampling and mapping of veins identified in the initial September 2025 reconnaissance.

It is planned to commence this work in mid-December with completion in mid to late January 2026.

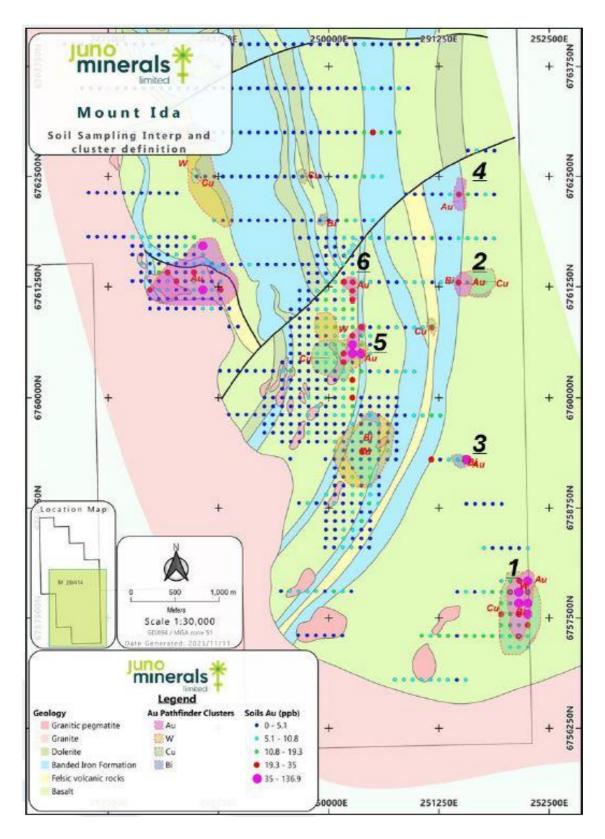


Figure 5: Six anomalies identified using Au, Cu, W, and Bi as pathfinder elements

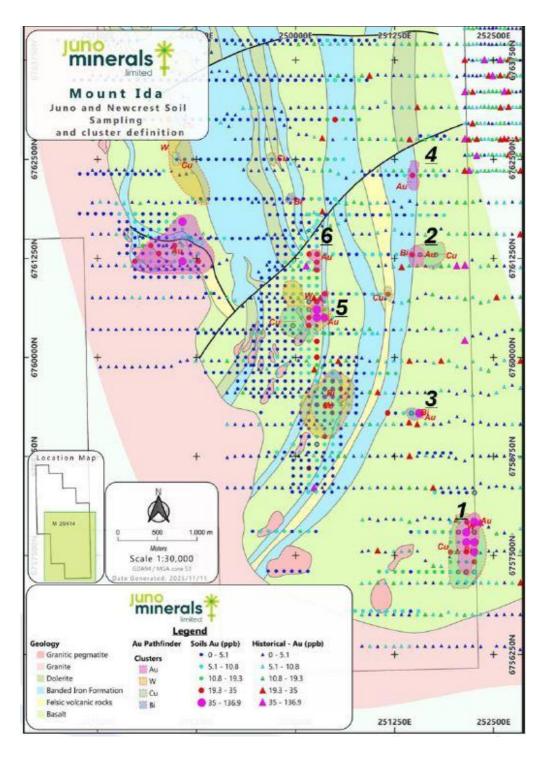


Figure 6: Juno soil sampling combined with Newcrest historical sampling

With Juno having a significant cash balance and impending royalty income stream from the sale of the Mount Mason DSO Hematite Project, and with gold projects and an operating gold mine nearby this presents a great opportunity for Juno to progress as expeditiously as possible.

This announcement has been approved for release by Greg Durack on behalf of the Board.

CONTACTS

Investor Relations
Greg Durack – Managing Director and CEO
P: + 61(0)8 9346 5599

E: investorrelations@junominerals.com.au

APPENDIX 1 – Competent Persons

Andrew Bewsher - BM Geological Services Pty Ltd

The information in this report that relates to exploration results is based on and fairly represents information reviewed by Andrew Bewsher, a Competent Person who is a Member of the Australasian Institute of Geoscientists. Andrew Bewsher is a full-time employee of BM Geological Services Pty Ltd who provide geological consultancy services to Juno Minerals Limited. Andrew Bewsher has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code"). Andrew Bewsher consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

All parties have consented to the inclusion of their work for the purposes of this announcement. The interpretations and conclusions reached in this announcement are based on current geological theory and the best evidence available to the author at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however might be, they make no claim for absolute certainty. Any economic decisions which might be taken on the basis of the interpretations or conclusions contained in this presentation will therefore carry an element of risk.