

ASX / MEDIA ANNOUNCEMENT

13 SEPTEMBER 2023

MOUNT IDA LITHIUM PROSPECT

HIGHLIGHTS

- Lithium prospectivity evaluation in the Mount Ida Project area continued south of the Mount Ida Magnetite resource, previously identified by geological mapping and initial Phase 1 soil sampling and RC drill program.
- Two significant well-defined Li-Cs-Rb-Be soils geochemical anomalies have been identified from the Phase 2 infill soils sampling program.
- Each anomaly is approximately 1000m long and up to 500m wide, trending north-south, with the southern anomaly open to further exploration.
- The pathfinder minerals associated with spodumene-bearing pegmatites, Li-Cs-Rb-Be are all enriched within the well-defined anomalies.
- An RC drill program has been designed to test the anomalies and will commence in the near future.

Juno Minerals Limited (ASX: JNO) ('**Juno**' or '**the Company**') is pleased to announce that it has received the Phase 2 infill soil sampling results for its evaluation of lithium prospectivity south of its Mount Ida Magnetite Project, within mining lease M29/414.

From the geological mapping conducted by Dr Mike Grigson, Arc Minerals, the area south of Fault 1, as shown in Figure 2, was deemed on the structural grounds to have good potential for the discovery of rare metal pegmatites. At Mount Ida, there are no outcropping rare metal pegmatites as walk-up targets for rock chipping and drilling, as such, geochemical soil sampling has been utilised to test for rare-metal pegmatites under cover. Subsequently, a broad spaced soil sampling program on 500m by 100m centres was recommended and completed. This Phase 1 soil program successfully defined a north-south geochemical trending anomaly for 3km with a width of 500m to 1km.

With the positive outcome of this program, a Phase 2 infill soil sampling program on 100m by 100m centres was then conducted, which has identified two significant well-defined Li-Cs-Rb-Be geochemical soil anomalies. As shown in Figure 1, each anomaly is 1000m long and up to 500m wide and trending north-south. The northern one extends from Fault 1 and the southern anomaly is open to further exploration to the south. The significance of this program is that the spodumene indicator minerals, Li-Cs-Rb-Be, are all coherent within the Geochem anomalies and means this is a fertile system. Addendum II from Dr Mike Grigson's updated report states, "Geological setting and controls on pegmatite in the Mount Ida project area, Western Australia", shown in Appendix 1, discusses the anomalies.

Figure 1: Phases 1 and 2 infill soil sampling lithium anomaly

Phase 2 infill soil sampling has informed a drill program to test the anomalies of 34 RC drill holes, each to a depth of 160m, totalling 5440m, shown in Figure 2.

This drill program will be quickly progressed. A Program of Work will be lodged shortly and arrangements for Heritage clearance will be made.

Figure 2: Geochem soil anomalies and Phase 2 planned RC drill holes

Regionally, the Mt Ida fault is attracting interest for rare metal pegmatites. Delta Lithium's Mt Ida Lithium Project located 19 km north of Juno's Mount Ida Lithium Prospect is being developed to initially produce a DSO with the intention to produce spodumene concentrate. Recently, Hancock has increased exposure to

lithium at Mt Bevan within their JV with Legacy and Hawthorn and will conduct exploration activities at Mt Bevan for lithium^{*}. Both these projects are shown in Figure 3 in relation to Juno's Central Yilgarn Project. ^{*}(Legacy and Hawthorn joint media release, "Hancock executes lithium earn-in and joint venture at Mt Bevan", 15 June 2023).

Figure 3: Juno's Central Yilgarn Project with Mount Ida Lithium Prospect

The Company also holds the Central Yilgarn Project, which includes the Mount Mason DSO Hematite and the Mount Ida Magnetite projects.

The investigation into lithium prospectivity on the Company's holding commenced initially with a review in August 2022, followed by geological mapping leading into an initial broad spaced drilling and soil sampling programs. The subsequent infill soil sampling has identified two well defined Li-Be-Cs-Rb geochemical anomalies, which we plan to drill.

The Mount Ida Lithium Prospect adds to the Company's Projects in the Central Yilgarn which is prime in an emerging lithium province.

This announcement has been approved for release by Greg Durack on behalf of the Board.

CONTACTS

<u>Investor Relations</u> Greg Durack – Managing Director and CEO P: + 61(0)8 9346 5599 E: investorrelations@junominerals.com.au

APPENDIX 1 – Addendum II Phase 2 Soil Sampling

This appendix discusses the results of the infill soil-sampling program set out in Appendix I and given the positive outcome of this work, presents recommendations for further RC drilling. Collection of the infill soil samples on 100 by 100 m centres was undertaken in June 2023, and 210 primary samples and a compliment of duplicate and standard samples were submitted to LabWest for the assaying of the ultrafine fraction (<2 micron) by ICP-MS.

Combined assay data showing the results of the original and infill soil-sampling programs are presented as a series of symbological overlays draped upon gridded images of the same data, and the line-work of the base geological interpretation map. The interpretation of the various element distribution patterns are discussed below, where the elements have been grouped according to the most likely controls on the patterns.

Rare-metal pegmatite association: lithium, beryllium, caesium, and rubidium

These metals are important components of spodumene-bearing pegmatite, but they also occur in lower concentrations in muscovite-rich granitic pegmatite, such as those intrusions that are widely distributed in the southern part of M29/414. As shown in Figures All-1 to All-4, the distribution patterns of these elements in the soil horizon are broadly similar, and two well-defined, north-south trending geochemical anomalies are defined. These main anomalies are each over 1km long and up to 500m wide, and they lie within areas of subdued relief and partial to complete soil cover between the surrounding low hills.

Parts of the Li -Cs-Rb-Be geochemical anomalies overlie outcropping granitic pegmatite intrusions, and thus some of the metals in the soil horizon may have been contained within muscovite fragments derived from the erosion of these intrusions. Nonetheless, the northern anomaly, near Fault 1, is largely developed over soil cover, in an area that is devoid of granitic pegmatite intrusions, and thus the metals in the soil horizon may reflect a different bedrock source, such as rare-metal pegmatites. Moreover, it is noted that, outside of the extent of the defined geochemical anomalies, the soil sampling traversed large tracts of outcropping granitic pegmatite that do not express as obvious metal enrichments in the soil horizon. This gives weight to the supposition that the geochemical anomaly reflects an array of late-stage rare-metal pegmatite intrusions, that were superimposed upon the more extensive field of granitic pegmatites.

The north-south trend of the two Li -Cs-Rb-Be geochemical anomalies is broadly aligned with the local strike orientation of shear-zone fabrics mapped in this area, and this likely reflects an important structural control on pegmatite intrusion emplacement. In such a shear-zone setting, conjugate intrusions of pegmatite commonly develop, but one set will generally dominate over the other and will dip in the opposite direction to the dip of the shear-zone fabric. At Mount Ida, south of fault 1, the shear-zone fabric typically dips steeply to the east, and thus the preferred dip orientation of potential pegmatite sheets is anticipated to be westerly.

Aplite association: tantalum, niobium, and tin

These metals are typically associated with aplite, as infiltrations or cross-cutting intrusions, in either granitic pegmatite (low Ta and Nb grades) or spodumene-bearing pegmatites (high grades; > 200ppm). The distribution patterns of these metals in the soil horizon are broadly similar (Figs All-5 to All-7), and for the most part the Ta-Nb-Sn anomalies defined by the sampling directly overlie exposed granitic pegmatite intrusions that are known to contain significant proportions of late-stage aplite. Interestingly, the Ta and Nb anomalies only partly overlap with the main Li-Cs-Rb-Be geochemical anomalies, which is unexplained, but it does provide some encouragement in terms of the potential preservation of metallurgically benign, coarse-

grained, spodumene-bearing pegmatite in the bedrock underlying the main anomaly. In known deposits elsewhere, an abundance of Ta-Nb aplite in spodumene-bearing pegmatite is typically associated with poorer lithium recoveries.

Exploration targets and proposed RC drilling

Overall, the infill soil-sampling program has enhanced the potential for the discovery rare-metal pegmatite intrusions at Mount Ida, and two clear exploration-target zones (coincident with the Li-Cs-Rb-Be geochemical anomalies) are now defined, one near Fault 1, and the other off-set and further to the south. The kilometric scale of the anomalies offers ample scope for the delineation of rare-metal pegmatite intrusions by undertaking further systematic RC drilling. Proposed collar positions for thirty-four drill holes are shown on the soil geochemistry plans (Figs AII-1 to AII-7), where the holes are set out in a systematic 200m by 80m patterns across the two exploration targets. Hole specifications are: -60° inclination towards magnetic east, and a drill depth of 160m.

Figure All-1

Figure All-2

200

...

00000

252000

6162000

ŏ

Fault

-248000

00000

000000000000

Figure All-4

APPENDIX 2 – Phase 2 Soil Sample Results

Semale ID	GDA94 / M	GA zone 51	Linner	Co nnm	Dh nam	Bannm	To nom	S n n n m	
Sample_ID	Northing	Easting	сі ррт	Cs ppm	ко ррт	ве ррт	ra ppm	Sn ppm	то ррт
JMIS_0245	249674	6761801	29.5	7.05	63.4	1.67	0.004	2.32	1.19
JMIS_0246	249774	6761801	31.6	5.66	51.9	1.76	0.004	2.04	0.59
JMIS_0247	249874	6761801	25.9	2.63	23.2	0.97	0.003	1.87	0.47
JMIS_0248	249974	6761801	28	6.33	52.4	1.54	0.003	2.01	0.38
JMIS_0249	250074	6761801	13.6	3.82	30.8	0.94	0.002	1.86	0.4
JMIS_0250	250174	6761801	72.9	31.6	190	5.22	0.004	4.64	0.9
JMIS_0251	250274	6761801	22	24.9	120	3.02	Х	2.39	0.14
JMIS_0252	250374	6761801	36	16.6	87.3	2.79	0.003	2.57	0.58
JMIS_0253	247772	6761712	33.3	5.88	65.8	2.28	0.007	2.98	0.84
JMIS_0254	247872	6761712	17.4	4.97	52.6	1.76	0.005	1.95	0.7
JMIS_0255	247972	6761712	16.4	6.55	74.7	2.29	0.003	2.3	1.29
JMIS_0256	248072	6761712	3.76	6.64	38.2	0.59	0.005	3.11	1.34
JMIS_0257	248172	6761712	54.4	7.22	78.9	3.25	0.007	2.98	1.57
JMIS_0258	248272	6761712	15.7	6.07	46.9	1.34	0.003	3.02	1.05
JMIS_0259	248372	6761712	17.5	4.84	42.7	1.43	0.003	2.6	0.94
JMIS_0260	248472	6761712	33.8	7.6	74.4	2.86	0.004	2.21	1.26
JMIS_0261	248572	6761712	28.6	10.4	79.1	3.33	0.015	3.99	1.36
JMIS_0262	247772	6761612	42.9	6.43	106	2.58	0.034	3.28	2.3
JMIS_0263	247872	6761612	13	4.83	71.8	1.01	0.045	2.98	2.83
JMIS_0264	247972	6761612	35.1	5.5	72.9	2.02	0.023	2.53	1.47
JMIS_0265	248072	6761612	31	4.15	76.1	2.19	0.031	2.9	3.98
JMIS_0266	248172	6761612	36.9	5.55	56.9	1.98	0.01	2.35	1.08
JMIS_0267	248272	6761612	26.2	5.59	75.4	1.99	0.021	2.89	1.22
JMIS_0268	248372	6761612	36.8	7.28	61.9	2.54	0.007	2.63	1.36
JMIS_0269	248472	6761612	24.4	6.49	71.5	2.27	0.006	2.75	1.57
JMIS_0270	248572	6761612	27.8	7.12	55.8	1.84	0.004	2.93	1.44
JMIS_0271	250268	6761602	22	7.24	71.3	3.03	0.005	2.33	0.97

	Sample ID	GDA94 / MGA zone 51		Lippm	Cennm	Ph ppm	Boppm			Nh nnm
	Sample_ID	Northing	Easting	Стррит			De ppm		Sirppin	
	JMIS_0272	247872	6761512	19.1	26.9	80.7	2.76	0.011	4.26	2.76
	JMIS_0273	247972	6761512	65	15.1	95.7	2.8	0.005	2.39	1.27
	JMIS_0274	248072	6761512	44.3	9.8	157	2.93	0.011	3.38	1.85
	JMIS_0275	248172	6761512	65.8	7.39	102	4.06	0.005	3.05	1.81
	JMIS_0276	248272	6761512	47.8	4.95	58.2	2.9	0.007	3.09	1.07
	JMIS_0277	248372	6761512	25.9	5.15	39.4	2.17	0.002	2.28	0.53
	JMIS_0278	248472	6761512	25.1	29.9	105	2.91	0.006	3.05	1.58
	JMIS_0279	248572	6761512	15	7.68	75.1	2.5	0.009	3.92	0.81
	JMIS_0280	248672	6761512	16.6	5.26	47.7	2.24	0.006	2.93	0.61
	JMIS_0281	250168	6761502	71.3	32.5	339	4.3	0.009	3.9	0.58
	JMIS_0282	250268	6761502	23.3	9.19	156	2.12	0.006	2.29	0.52
	JMIS_0283	247872	6761412	37.2	5.42	104	3.14	0.016	3.14	1.2
	JMIS_0284	247972	6761412	37.9	6.76	171	4.99	0.021	3.68	1.74
	JMIS_0285	248072	6761412	78.3	15.7	218	6.38	0.01	3.47	1.51
	JMIS_0286	248172	6761412	37.2	16.7	204	4.49	0.005	2.7	1.55
	JMIS_0287	248272	6761412	29.4	4.03	76.1	2.57	0.021	3.54	3.68
	JMIS_0288	248372	6761412	43.8	5.45	108	2.77	0.01	2.81	1.03
	JMIS_0289	248472	6761412	23.6	5.95	149	2.85	0.012	3.31	1.8
	JMIS_0290	248572	6761412	38.4	6.85	88.3	3.18	0.015	3.77	1.24
	JMIS_0291	248672	6761412	17.5	3.45	34.9	1.95	0.003	2.23	0.31
	JMIS_0292	250068	6761402	27.6	7.39	99	1.75	0.002	1.6	0.23
	JMIS_0293	250168	6761402	41.6	16.2	185	2.81	0.007	2.84	0.64
	JMIS_0294	250268	6761402	41.9	9.75	93.8	1.81	0.011	1.63	0.86
	JMIS_0295	249774	6761301	12.5	3.42	54.5	1.18	0.004	1.86	0.33
	JMIS_0296	249874	6761301	94.2	57	914	8.79	0.018	5.88	1.18
Ī	JMIS_0297	247972	6761212	15.3	6.95	74.1	1.94	0.004	2.47	0.51
	JMIS_0298	248072	6761212	23.5	4.92	110	2.67	0.009	2.12	2.11
	JMIS_0299	248172	6761212	27	10.7	170	3.86	0.007	2.67	2.26
	JMIS_0300	248272	6761212	31	4.99	135	2.36	0.007	2.22	2.12

Sample ID	GDA94 / MGA zone		Lippm	Cs ppm	Ph ppm	Be nnm	Ta nnm	Sn nom	Nb ppm
 Sample_ID	Northing	Easting	стррш	CS ppin		De ppm		Sil ppin	
JMIS_0301	248372	6761212	37.2	7.62	187	2.3	0.005	1.84	1.6
JMIS_0302	248472	6761212	31.7	4.93	72.8	3.27	0.015	2.59	0.95
JMIS_0303	248572	6761212	21.7	3.93	59.3	1.95	0.009	2.35	0.66
JMIS_0304	248672	6761212	11.2	2.54	43	1.38	0.006	1.93	0.33
JMIS_0305	248772	6761212	28.2	4.35	71.6	1.52	0.005	2	0.59
JMIS_0306	249868	6761202	64.4	24.2	203	8.1	0.01	3.92	0.5
JMIS_0307	249968	6761202	38.5	9.06	95.6	2.72	0.004	2.57	0.45
JMIS_0308	250068	6761202	42.1	8.1	136	2.39	0.005	2.6	0.57
JMIS_0309	250168	6761202	26.7	8.15	169	2.07	0.005	2.31	0.66
JMIS_0310	250268	6761202	17.4	8.27	127	1.18	0.003	1.48	0.55
JMIS_0311	247972	6761112	22.3	5.31	90.8	1.95	0.003	2.2	0.53
JMIS_0312	248072	6761112	28.6	7.07	76.3	2.05	0.014	3.78	0.85
JMIS_0313	248172	6761112	42.1	4.36	72.2	1.5	0.005	1.87	0.32
JMIS_0314	248272	6761112	30.3	5.29	111	1.58	0.007	1.74	0.8
JMIS_0315	248372	6761112	48	5.03	46.9	2.82	0.007	2.33	0.44
JMIS_0316	248472	6761112	46.1	7.93	139	2.68	0.005	2.33	0.94
JMIS_0317	248572	6761112	44.5	6.64	103	2.87	0.024	3.36	0.8
JMIS_0318	248672	6761112	47.2	5.58	84.8	2.56	0.015	2.98	0.86
JMIS_0319	248772	6761112	41.1	4.83	74.7	2.1	0.01	2.36	0.61
JMIS_0320	249768	6761102	35.1	8.37	97	2.4	0.007	2.11	0.38
JMIS_0321	249868	6761102	88.5	22.9	242	3.27	0.009	2.2	0.5
JMIS_0322	249968	6761102	103	20.2	199	6.61	0.011	3.28	0.71
JMIS_0323	250068	6761102	81.2	21.8	260	5.83	0.008	4.31	1.17
JMIS_0324	250168	6761102	17.6	6.01	63.8	1.24	0.003	1.62	0.29
JMIS_0325	250268	6761102	16.4	5.75	36.2	1.32	0.005	1.35	0.25
JMIS_0326	247972	6761012	22.7	4.69	78	1.62	0.004	2.08	0.48
JMIS_0327	248072	6761012	21.9	5.73	96.3	2.84	0.005	3.47	0.9
JMIS_0328	248172	6761012	58.7	6.26	108	2.39	0.006	2.21	0.87
JMIS_0329	248272	6761012	61.2	5.36	76.5	1.85	0.005	2.03	0.58

	Sample ID	GDA94 / MGA zone 51		Lippm	Canom	Ph ppm	Bo ppm	Tannm		
	Sample_ID	Northing	Easting	стррії	CS ppin	ко ррш	Be ppill	га ррш	Shippin	но ррп
	JMIS_0330	248372	6761012	46.6	6.42	110	2.67	0.014	2.84	2.1
[JMIS_0331	248472	6761012	48.7	5.73	76.6	3.63	0.012	2.9	1.15
Γ	JMIS_0332	248572	6761012	31.1	5.44	94.5	1.9	0.012	2.96	1
	JMIS_0333	248672	6761012	37.2	5.9	94.6	2.77	0.013	2.89	0.79
Γ	JMIS_0334	248772	6761012	28.2	5.79	78.1	2.19	0.012	2.94	0.78
Γ	JMIS_0335	248872	6761012	18.9	5.38	69.7	1.57	0.009	2.96	0.54
ſ	JMIS_0336	249768	6761002	42	10.3	118	2.78	0.005	2.26	0.27
Γ	JMIS_0337	249868	6761002	90.7	20.6	200	6.15	0.005	2.83	0.3
ſ	JMIS_0338	249968	6761002	104	24.4	201	5.63	0.004	3.18	0.52
ſ	JMIS_0339	250068	6761002	121	29.4	273	5.33	0.012	4.15	1.17
ſ	JMIS_0340	250168	6761002	58.2	9.13	144	2.82	0.007	2.41	1.07
Ī	JMIS_0341	250268	6761002	44.4	12.1	115	2.39	0.004	2.08	0.71
ſ	JMIS_0342	249768	6760902	69	9.1	112	4.88	0.015	3.37	0.5
Ī	JMIS_0343	249868	6760902	80.8	8.66	123	8.83	0.009	2.9	0.61
ſ	JMIS_0344	249968	6760902	86.4	9.42	121	6.55	0.03	2.95	1.37
ſ	JMIS_0345	250068	6760902	53	10.8	109	3.75	0.005	2.8	0.92
Γ	JMIS_0346	250168	6760902	39.2	8.05	91	1.8	0.005	2.15	1.47
ſ	JMIS_0347	250268	6760902	36.7	19.9	105	1.58	0.002	1.75	0.48
Γ	JMIS_0348	249768	6760702	110	24.7	168	7.55	0.016	3.96	1.5
ſ	JMIS_0349	249868	6760702	145	35.9	253	8.98	0.021	3.64	1.64
ſ	JMIS_0350	249968	6760702	160	50.3	281	5.99	0.005	3.65	1.12
ſ	JMIS_0351	250068	6760702	97.7	43.5	330	6.57	0.037	5.46	1.57
ſ	JMIS_0352	250168	6760702	146	31.2	252	5.05	0.019	4.35	2.43
ſ	JMIS_0353	250268	6760702	38.6	19	112	1.8	0.005	2.32	0.86
Ī	JMIS_0354	249768	6760602	22.7	7.97	62.8	2.05	0.003	2.49	0.35
Ī	JMIS_0355	249868	6760602	86	14.8	136	4.17	0.008	2.51	1.06
Ī	JMIS_0356	249968	6760602	57.4	31	150	7.83	0.005	2.43	0.47
ľ	JMIS_0357	250068	6760602	101	41.2	202	2.87	0.009	3.32	2.26
Ī	JMIS_0358	250168	6760602	94.3	13.6	116	5.1	0.011	4.08	1.81

	Sample ID	GDA94 / M	GDA94 / MGA zone 51		Cennm	Ph nnm	Boppm	Tappm	Sn nom	Nb ppm
	Sample_ID	Northing	Easting	стррпі	Cs ppin	ко ррп	De ppin		Sirppin	
	JMIS_0359	250268	6760602	80	24.2	164	2.88	0.008	2.98	1.43
	JMIS_0360	249768	6760502	48.4	5.18	58.4	2.39	0.006	2.35	0.97
	JMIS_0361	249868	6760502	123	25.1	247	7.55	0.014	3.63	1.22
	JMIS_0362	249968	6760502	113	13.7	141	9.38	0.01	3.11	1.07
	JMIS_0363	250068	6760502	79.8	24.2	158	3.86	0.014	4.89	0.67
	JMIS_0364	250168	6760502	55.2	29.1	272	3.74	0.008	3.15	1.69
	JMIS_0365	250268	6760502	44	13	82	2.17	0.005	2.62	1.1
	JMIS_0366	249768	6760402	26.6	3.43	31.2	1.28	0.002	1.85	0.52
	JMIS_0367	249868	6760402	36.1	6.13	61.5	1.72	0.008	2.47	0.51
	JMIS_0368	249968	6760402	57.2	13.6	139	7.61	0.008	2.59	0.7
	JMIS_0369	250068	6760402	54.6	11.4	96.8	3.06	0.008	2.59	0.91
	JMIS_0370	250168	6760402	41.8	16.1	101	2.2	0.006	2.08	0.88
	JMIS_0371	250268	6760402	57.5	32.4	187	3.02	0.009	2.84	1.6
	JMIS_0372	249868	6760202	30.2	6.51	56.9	1.51	0.003	1.61	0.62
	JMIS_0373	249968	6760202	70.7	11.2	108	4.12	0.014	2.74	0.79
	JMIS_0374	250068	6760202	111	66.7	691	6.06	0.014	5.55	2.39
	JMIS_0375	250168	6760202	25.5	6.22	88.9	1.7	0.003	2.01	0.46
	JMIS_0376	250268	6760202	24.6	15.7	187	2.32	0.008	2.24	0.54
	JMIS_0377	249868	6760102	27.2	7.57	115	2.75	0.006	2.08	0.71
	JMIS_0378	249968	6760102	23.8	9.69	143	3.66	0.004	2.03	0.28
	JMIS_0379	250068	6760102	46	13.7	190	2.83	0.017	2.63	0.76
	JMIS_0380	250168	6760102	63.3	15.7	182	3.8	0.015	3.48	1.23
	JMIS_0381	250268	6760102	23.8	29.2	296	2.51	0.006	3.41	1.07
	JMIS_0382	249868	6760002	82.5	7.81	137	5.68	0.005	2.5	0.8
	JMIS_0383	249968	6760002	38.9	9.01	150	2.61	0.006	2.38	0.52
	JMIS_0384	250068	6760002	74.1	9.7	156	4.1	0.013	3.58	1.05
Ī	JMIS_0385	250168	6760002	29.5	9.55	130	2.61	0.004	2.71	0.39
Ī	JMIS_0386	250268	6760002	32.2	17.8	178	3.38	0.008	3.18	1.09
	JMIS_0387	250368	6760002	37	8.41	180	5.03	0.017	5.09	1.77

	Sample ID	GDA94 / MGA zone 51		Linnm	Cennm	Ph nom	Boppm	Tappm	Sapom	Nb ppm
	Sample_ID	Northing	Easting	стррпі	Cs ppin	ко ррп	De ppin		on ppm	No ppm
	JMIS_0388	250468	6760002	29.5	3.61	66.1	1.94	0.002	1.8	0.34
	JMIS_0389	249868	6759902	76	18.9	201	3.58	0.008	2.44	1
	JMIS_0390	249968	6759902	26.8	8.73	120	1.89	0.004	2.44	0.58
	JMIS_0391	250068	6759902	52.8	9.15	93.1	2.43	0.019	2.64	1.21
	JMIS_0392	250168	6759902	42.8	8.35	82.1	2.04	0.019	2.25	0.91
	JMIS_0393	250268	6759902	24.9	34.5	170	2.37	0.015	3.05	1.11
	JMIS_0394	250368	6759902	50.7	7.34	107	1.91	0.018	2.3	1.24
	JMIS_0395	250468	6759902	63.6	10.7	106	1.65	0.016	1.52	0.77
ſ	JMIS_0396	250568	6759902	68.2	9.73	91	4.23	0.021	3.95	0.94
ſ	JMIS_0397	249968	6759802	51	11.6	136	2.38	0.024	2.12	0.97
ſ	JMIS_0398	250068	6759802	25.8	6.61	96	2.15	0.003	2.59	0.28
	JMIS_0399	249768	6759702	25.6	4.09	68.7	2.97	0.001	1.7	0.26
ſ	JMIS_0400	249868	6759702	48.4	7.71	126	7.17	0.008	5.14	2.35
ſ	JMIS_0401	249968	6759702	40.3	9.93	188	3.38	0.007	2.68	0.8
ſ	JMIS_0402	250068	6759702	46.8	7.95	126	3.41	0.019	3.19	0.81
	JMIS_0403	250168	6759702	33.4	7.48	121	2.58	0.008	2.96	0.33
ſ	JMIS_0404	250268	6759702	28.1	13.7	106	2.47	0.007	4.09	0.93
	JMIS_0405	250368	6759702	47.4	5.36	116	3.2	0.006	1.86	0.66
	JMIS_0406	250468	6759702	79.6	5.87	93.8	4.16	0.003	1.69	0.47
ſ	JMIS_0407	250568	6759702	54.4	19.9	155	3.52	0.012	2.69	0.72
ſ	JMIS_0408	249768	6759602	60.2	20.4	130	2.77	0.004	2.15	0.31
ſ	JMIS_0409	249868	6759602	63.7	14.9	110	2.79	0.012	2.73	0.35
Γ	JMIS_0410	249968	6759602	35	8.75	103	1.83	0.006	2.12	0.29
ſ	JMIS_0411	250068	6759602	45.9	8.11	96	2.2	0.01	2.31	0.33
Γ	JMIS_0412	250168	6759602	42.7	8.94	74.3	2.67	0.007	2.61	0.39
Γ	JMIS_0413	250268	6759602	37	5.98	55.4	3.4	0.006	3.99	0.3
ſ	JMIS_0414	250368	6759602	58.5	3.23	45.9	2.52	0.007	1.31	0.42
ſ	JMIS_0415	250468	6759602	47.6	4.02	59.6	4.78	0.008	2.02	0.55
ſ	JMIS_0416	250568	6759602	56	5.07	72.9	5.89	0.005	2.09	0.46

Sample ID	GDA94 / M	GDA94 / MGA zone 51		Canom	Ph nom	Ro ppm		Sn nom	Nb ppm
Sample_ID	Northing	Easting	Li ppili	CS ppin	Ko bbiii	ве ррп	та ррп	Sirppin	No ppm
JMIS_0417	249668	6759502	61	10.4	112	3.13	0.027	2.79	0.6
JMIS_0418	249768	6759502	40.3	9.82	89.4	2.66	0.004	2.26	0.73
JMIS_0419	249868	6759502	55.8	19.2	156	2.76	0.012	2.68	0.56
JMIS_0420	249968	6759502	26.3	6.99	73.4	1.26	0.004	1.74	0.42
JMIS_0421	250068	6759502	37.8	11.4	115	3.18	0.024	2.98	0.82
JMIS_0422	250168	6759502	50.4	10.1	98.6	2.03	0.008	2.11	0.47
JMIS_0423	250268	6759502	54.6	4.26	64.9	2.62	0.007	1.71	0.3
JMIS_0424	250368	6759502	58.8	3.97	49	2.8	0.007	1.52	0.28
JMIS_0425	250468	6759502	122	22.2	162	6.55	0.011	2.65	0.36
JMIS_0426	250568	6759502	91.5	4.2	68.4	7.36	0.024	3.13	1.13
JMIS_0427	250068	6759402	24	26.2	189	2.44	0.022	3.67	1.07
JMIS_0428	250168	6759402	67.1	11.6	146	2.53	0.009	2.52	0.88
JMIS_0429	250268	6759402	63.9	5.27	70.5	3.78	0.006	1.84	0.19
JMIS_0430	250368	6759402	73	12	107	3.97	0.022	2.43	0.7
JMIS_0431	250468	6759402	62.8	3.87	56.4	3.33	0.005	1.85	0.33
JMIS_0432	250068	6759202	34.3	10.4	138	4.51	0.005	7.86	0.34
JMIS_0433	250168	6759202	56	5.65	61.3	2.45	0.012	2.18	0.5
JMIS_0434	250268	6759202	81.1	6.98	70.4	3.69	0.007	2.05	0.2
JMIS_0435	250368	6759202	93.8	11.1	62.3	2.13	0.006	1.29	0.29
JMIS_0436	250468	6759202	56.7	9.55	142	3.67	0.012	2.91	0.89
JMIS_0437	250068	6759102	41	8.08	77.8	3.67	0.014	4.86	0.5
JMIS_0438	250168	6759102	75	6.14	70.6	3.71	0.016	2.05	0.53
JMIS_0439	250268	6759102	40.6	4.89	59.6	2.13	0.008	1.67	0.29
JMIS_0440	250368	6759102	64.4	5.7	85.2	5.84	0.017	2.32	0.63
JMIS_0441	250468	6759102	33.9	3.02	55.5	6.59	0.01	4.22	0.46
JMIS_0442	250068	6759002	47.1	14.3	136	3	0.017	3.25	0.76
JMIS_0443	250168	6759002	48.6	9.84	118	2.09	0.003	1.6	0.44
JMIS_0444	250268	6759002	139	46.6	438	3.59	0.031	2.08	1.8
JMIS_0445	250368	6759002	113	9.88	143	7.22	0.037	2.9	1.2

Sample ID	GDA94 / M	GA zone 51	Lippm	Conn	Ph nom	Boppm	Tappm	So pom	Nb ppm
 Northing Easting	стррії	Cs ppm	Ko ppin	be ppm	ra ppin	Shippin	No ppm		
JMIS_0446	250068	6758902	56	8.53	159	6.11	0.026	5.99	3.06
JMIS_0447	250168	6758902	103	10.9	152	5.7	0.03	2.68	1.09
JMIS_0448	250268	6758902	124	22.7	270	3.9	0.016	2.66	1.6
JMIS_0449	250368	6758902	52.7	5.53	81.6	3.07	0.02	2.41	0.57
JMIS_0450	250168	6758702	117	35.7	426	7	0.036	4.59	3.74
JMIS_0451	250268	6758702	92.6	8.99	114	5.57	0.012	2.61	1.5
JMIS_0452	250368	6758702	90.7	9.81	172	6.69	0.017	4.37	0.62
JMIS_0453	250168	6758602	49.2	6.95	106	2.72	0.008	2.02	0.62
JMIS_0454	250268	6758602	61.5	4.04	60.5	2.7	0.014	1.85	0.51

APPENDIX 3 – Competent Persons

Dr Mike Grigson – Arc Minerals

The information in this report that relates to exploration results is based on and fairly represents information generated by Dr Mike Grigson, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Dr Grigson is a full-time employee of Arc Minerals consultants, and provides ad hoc geological consultancy services to Juno Minerals Limited. Dr Grigson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code"). Dr Grigson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Andrew Bewsher – BM Geological Services Pty Ltd

The information in this report that relates to exploration results is based on and fairly represents information reviewed by Andrew Bewsher, a Competent Person who is a Member of the Australasian Institute of Geoscientists. Andrew Bewsher is a full-time employee of BM Geological Services Pty Ltd who provide geological consultancy services to Juno Minerals Limited. Andrew Bewsher has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code"). Andrew Bewsher consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

All parties have consented to the inclusion of their work for the purposes of this announcement. The interpretations and conclusions reached in this announcement are based on current geological theory and the best evidence available to the author at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however might be, they make no claim for absolute certainty. Any economic decisions which might be taken on the basis of the interpretations or conclusions contained in this presentation will therefore carry an element of risk.

APPENDIX 4 – JORC Code, 2012 Edition

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 Ultra-fine Fraction (UFF) Geochemical Soil Sampling: A total of 220 samples (including checks and duplicates) were collected by Juno Minerals during a follow up soils program over the Mount Ida Project during June and July 2023. The Phase 2 Mount Ida Ultra-fine soil sampling program was designed as a follow up pass to geochemically test mining tenement M29/414. Primarily for anomalous LCT pathfinder elements identified during the 2023 Phase 1 maiden soil sampling program as well as to investigate prospective portions of the tenement not covered by the 2023 Phase 1 soil samples were collected: at a nominal 500 X 100m grid designed to cover prospective target areas not investigated during earlier sampling programs And at a 100 X 100m infill grid over targeted areas that indicated anomalous LCT pegmatite pathfinder element concentrations during the 2023 Q1 Soil sampling program The Ultrafine soil samples from the Mount Ida project were analysed using a CSIRO developed program that utilises the latest advanced technologies for geochemical mapping and targeting. Ultrafine is designed to analyse the clay-sized fraction (<2µm) for gold exploration and multielement analysis for major and trace

Criteria	JORC Code explanation	Commentary
		elements.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Soil samples were collected in the field by removing any surface vegetation, lag and topsoil and then digging down to a nominal depth of approximately 20cm. The collected sample was sieved to -2mm and placed in a pre-numbered paper sample bag. Approximately 500g of sample material was collected at each sample point Juno Minerals submitted all UFF soil samples to LabWest – Perth for analysis utilising the CSIRO backed Ultrafine analysis method. All sampling was conducted using QAQC sampling protocols which are in accordance with industry best practice, including certified reference material standards, blanks and field duplicates. All soils samples were prepared and assayed by an independent commercial laboratory whose instrumentation are regularly calibrated.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Soils Sampling: Ultrafine+ is designed to analyse the clay-sized fraction (<2µm) for gold exploration, and multielement analysis for major and trace elements using LabWest's Ultrafine microwave digest with an ICPEOS/MS finish.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• N/A

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	• N/A
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Sampling equipment was cleaned in between each sample for the soils samples.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No material bias has been identified during the soils sampling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	• N/A
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	• N/A
	• The total length and percentage of the relevant intersections logged.	• N/A
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. 	 N/A, no core was recovered
	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	All samples were dry during collection.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Soils samples: All samples were dry sieved (-2mm) and approximately 500 grams of minus 2mm material sampled in the field and bagged. No further subsampling is conducted. A 200g sample is considered appropriate for UFF soil sampling; samples collected where more than adequate to generate an representative subsample aliquot.

Criteria	JORC Code explanation	Commentary
		• Soil samples were placed directly into pre-numbered paper bags at the location from which they were collected.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Soils sampling: Standards (prepared on site) were submitted every 50 samples; filed duplicates were taken every 50 samples. Sample sizes are considered to be appropriate to correctly represent the geological model and the style of mineralisation.
	 Measures taken to ensure that the sampling is representative of the is situ material collected, including for instance results for field duplicate/second-half sampling. 	 Soil Sampling criteria included: the sample was a fair representation of the area sampled. the sample being in-situ and not to be transported material. Sample mass was at least 500g per sample. Field duplicates were taken every 50 samples and within 1m of the original sample.
	 Whether sample sizes are appropriate to the grain size of the materia being sampled. 	 Required samples mass for the Ultrafine method is 200g, enough sample material was provided to ensure multiple repeat assays of each sample if needed; samples collected where more than adequate to generate an representative subsample aliquot The Ultrafine method utilises the -2 micron clay fraction, all sample material above 2mm was screened off to ensure ample -2 micron material in the sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 All UFF soil samples was submitted to LabWest – Perth for analysis and sample preparation including separation and collection of <2µm fraction. Gold and multi-element analysis was done utilising LabWest's Ultrafine+ microwave digest with an ICPEOS/MS finish.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 No geophysical tools or other non-assay instrument types were used in the analyses reported.

Criteria	JORC Code explanation	Commentary
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established	 Soils sampling: Standards (prepared on site) were submitted at least every 50 samples; field duplicates were collected at least every 50 samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. 	• N/A
	The use of twinned holes.	• N/A
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Results are uploaded into the company database, checked and verified.
		 All data is stored in a Company database system and maintained by the Database Manager
	Discuss any adjustment to assay data	There were no adjustments to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 The soils sample locations were located using handheld GPS systems, due to the relative lack of thick tree cover the accuracy can be expected to be within +/- 3m on the easting and northing and +/- 5m on the elevation. This is considered adequate for the type and purpose of sampling program.
	Specification of the grid system used.	The grid system used is GDA94, MGA Zone 51.
	Quality and adequacy of topographic control.	• Z values quoted in this report are from the handheld GPS. Historical LIDAR surveys will enable very accurate topographic correlation
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Data spacing and distribution at this stage is not considered satisfactory for estimation of economic parameters. Nor is the use of soil sampling results considered applicable to the reporting of exploration results

Criteria	JORC Code explanation	Commentary
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	• N/A
	 Whether sample compositing has been applied. 	 No compositing has been applied to the exploration results
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	• The orientation of the sample lines is considered to be perpendicular to the strike of regional structures and geological contacts. The orientation of sampling is considered appropriate with respect to the structure and targets being tested.
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	No orientation-based sampling bias has been identified.
Sample security	• The measures taken to ensure sample security.	 Chain of custody has been managed by the company and the relevant consulting geologist until samples passed to the registered freight company (KalExpress) transporting the samples to the Labwest laboratory When in transit the samples were placed in sealed boxes and wrapped in plastic shrink wrap that would indicate tampering. The laboratory was sent a sample submission sheet detailing the sample numbers and analyses and a full list of analytes. The sample submission sheet was cross referenced with the samples on arrival at the laboratory. No sample preparation or analyses was to commence if there were any discrepancies
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Sampling and assaying techniques are industry standard.No external audit has been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 The Li target area falls within Mining Lease M29/414, which is wholly owned by Juno Minerals Limited, it was granted on 25 November 2011 and expires on 24 November 2032. The tenement is bounded by Hawthorn Resources' tenement E29/510 (Exploration) to the north and the Juno tenement G29/022 (General) to the south. This tenement has been cleared of Native Title interests.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• The tenement and surrounding area has had extensive hematite exploration since its initial discovery in 1912. LCT pegmatites has not been previously explored for on M29/414 until the maiden exploration programs initiated by Juno Minerals in 2023.
Geology	Deposit type, geological setting and style of mineralisation.	 The mineralization style related to this release are specialty metals related to LCT-pegmatite intrusives. These types of pegmatite are known to occur locally to the northeast on the Delta Lithium Mt Ida Lithium Project. The Juno Minerals Mount Ida project lies in the easternmost part of the Southern Cross domain of the Archean Youanmi Terrane, just west of the Ida fault. Youanmi Terrane greenstone banded iron formation and basalt units dominate the majority of the tenement with the western flank of the tenement hosting Tuckanarra Suite granitoids and Walganna Suite granitoids in the south. Interconnected intrusions of granitic pegmatite up to 20m thick crop out extensively in the south of tenement M29/414. The granitic pegmatite instructions are heavily modified by ductile deformation and

Criteria	JORC Code explanation	Commentary
		voluminous late-stage injections of aplite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to Appendix 1 for the reporting of the geochemical sampling results.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. 	 Juno Minerals has reported raw assays for soil sampling.
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	Not applicable as no aggregates results were reported
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Soil sampling generate a set of point data. In aggregation these may define an anomaly whose size and geometry becomes apparent. No structural context is gleaned from this dataset.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Results have been reported for the main elements targeted (Li, Cs, Rb, be, Sn, Ta, Nb) for all soil samples. Results summarised in the report are referenced to appropriate detail for large datasets, ranges of results are provided
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Refer to body of text and Appendix 1 All meaningful and material information has been included in the body of the text. There is no other exploration data which is considered material to the results reported in this announcement
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work is described in the body of the announcement. Further work is proposed and is subject to both budgetary constraints and to new information coming to hand which may lead to changes in the proposed work.

